ar_wordlist_import()
import a table of responses from manual spelling correction.
Usage
ar_wordlist_import(
associations,
file = "wordlist_correction.csv",
process_cues = TRUE,
na = c("NA")
)
Arguments
- associations
an
associatoR
object containing association data as generated by ar_import.- file
a
character
string specifying the filename containing the file spelling correction table exported by ar_wordlist_export. Must be a .CSV file and contain columnsc("response", "response_correct")
. Default name is"wordlist_correction.csv"
.- process_cues
a
logical
indicating if cues should be processed (i.e. changed byfun
) or not.- na
a
character
vector indicating the values signifying invalid values. Devaults toc("NA")
.
Examples
ar_obj = ar_import(intelligence,
participant = participant_id,
cue = cue,
response = response,
participant_vars = c(gender, education),
response_vars = c(response_position, response_level)) %>%
ar_normalize_manual(trimws, which = "left")
ar_wordlist_import(ar_obj)
#> Warning: One or more parsing issues, call `problems()` on your data frame for details,
#> e.g.:
#> dat <- vroom(...)
#> problems(dat)
#> Rows: 9973 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (4): response, spelling_check, acronym_check, acronym_candidate
#> dbl (1): response_frequency
#> lgl (1): response_correct
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#>
#> ── An associatoR object ────────────────────────────────────────────────────────
#>
#> participants
#> # A tibble: 1,000 × 3
#> id gender education
#> <dbl> <chr> <chr>
#> 1 1 male high school
#> 2 2 male high school
#> 3 3 male high school
#> 4 4 male high school
#> 5 5 male high school
#> # ℹ 995 more rows
#>
#> cues
#> # A tibble: 804 × 2
#> cue cue_orig
#> <chr> <chr>
#> 1 intelligence intelligence
#> 2 Einstein Einstein
#> 3 books books
#> 4 IQ tests IQ tests
#> 5 college college
#> # ℹ 799 more rows
#>
#> responses
#> # A tibble: 29,882 × 7
#> id cue response response_position response_level response_original
#> <dbl> <chr> <chr> <dbl> <dbl> <chr>
#> 1 1 intelligence Einstein 1 1 Einstein
#> 2 1 intelligence books 2 1 books
#> 3 1 intelligence IQ tests 3 1 IQ tests
#> 4 1 intelligence college 4 1 college
#> 5 1 intelligence smart p… 5 1 smart people
#> # ℹ 29,877 more rows
#> # ℹ 1 more variable: cue_orig <chr>
#>