ar_normalize_dict
offers an interface to normalization responses (and cues) in associatoR
objects based on a dictionary.
Arguments
- associations
an
associatoR
object containing association data as generated by ar_import.- dictionary
a
data.frame
consisting of two columns namedc("old","new")
.- process_cues
a
logical
indicating if cues should be processed (i.e. changed byfun
) or not.
Value
Returns an associatoR
object containing a list of tibbles:
- participants
A tibble of participants including a participant
id
and potential participant attributes.- cues
A tibble of cues including a
cue
variable and potential cue attributes.- responses
A tibble of responses including a participant id, the cues, the responses, the response level, and additional response attributes. All responses are passed through
fun
Examples
dict <- data.frame(old = c("intelligence", "iq"),
new = c("Intelligence", "IQ"))
ar_import(intelligence,
participant = participant_id,
cue = cue,
response = response,
participant_vars = c(gender, education),
response_vars = c(response_position, response_level)) %>%
ar_normalize_dict(dict)
#>
#> ── An associatoR object ────────────────────────────────────────────────────────
#>
#> participants
#> # A tibble: 1,000 × 3
#> id gender education
#> <dbl> <chr> <chr>
#> 1 1 male high school
#> 2 2 male high school
#> 3 3 male high school
#> 4 4 male high school
#> 5 5 male high school
#> # ℹ 995 more rows
#>
#> cues
#> # A tibble: 804 × 1
#> cue
#> <chr>
#> 1 intelligence
#> 2 Einstein
#> 3 books
#> 4 IQ tests
#> 5 college
#> # ℹ 799 more rows
#>
#> responses
#> # A tibble: 29,882 × 6
#> id cue response response_position response_level response_orig
#> <dbl> <chr> <chr> <dbl> <dbl> <chr>
#> 1 1 intelligence Einstein 1 1 Einstein
#> 2 1 intelligence books 2 1 books
#> 3 1 intelligence IQ tests 3 1 IQ tests
#> 4 1 intelligence college 4 1 college
#> 5 1 intelligence smart people 5 1 smart people
#> # ℹ 29,877 more rows
#>