Append the response frequency
of each target to the targets
table in the associatoR
object.
Arguments
- associations
an
associatoR
object containing association data as generated by ar_import.- ...
optional
logical
comparisons filtering the responses before computing the frequencies.
Value
Returns an associatoR
object containing a list of tibbles, with targets
gaining a frequency
column:
- participants
A tibble of participants including a participant
id
and potential participant attributes.- cues
A tibble of cues including a
cue
variable and potential cue attributes.- responses
A tibble of responses including a participant id, the cues, the responses, the response level, and additional response attributes.
- targets
A tibble of targets including a column `frequency` containing counts of this target in the responses.
Examples
ar_import(intelligence,
participant = participant_id,
cue = cue,
response = response,
participant_vars = c(gender, education),
response_vars = c(response_position, response_level)) %>%
ar_set_targets(targets = "cues") %>%
ar_count_targets()
#>
#> ── An associatoR object ────────────────────────────────────────────────────────
#>
#> participants
#> # A tibble: 1,000 × 3
#> id gender education
#> <dbl> <chr> <chr>
#> 1 1 male high school
#> 2 2 male high school
#> 3 3 male high school
#> 4 4 male high school
#> 5 5 male high school
#> # ℹ 995 more rows
#>
#> cues
#> # A tibble: 804 × 1
#> cue
#> <chr>
#> 1 intelligence
#> 2 Einstein
#> 3 books
#> 4 IQ tests
#> 5 college
#> # ℹ 799 more rows
#>
#> responses
#> # A tibble: 29,882 × 5
#> id cue response response_position response_level
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 intelligence Einstein 1 1
#> 2 1 intelligence books 2 1
#> 3 1 intelligence IQ tests 3 1
#> 4 1 intelligence college 4 1
#> 5 1 intelligence smart people 5 1
#> # ℹ 29,877 more rows
#>
#> targets
#> # A tibble: 804 × 2
#> target frequency
#> <chr> <dbl>
#> 1 intelligence 52
#> 2 Einstein 102
#> 3 books 114
#> 4 IQ tests 65
#> 5 college 50
#> # ℹ 799 more rows
#>
ar_import(intelligence,
participant = participant_id,
cue = cue,
response = response,
participant_vars = c(gender, education),
response_vars = c(response_position, response_level)) %>%
ar_set_targets(targets = "cues") %>%
ar_count_targets(response_position == 1)
#>
#> ── An associatoR object ────────────────────────────────────────────────────────
#>
#> participants
#> # A tibble: 1,000 × 3
#> id gender education
#> <dbl> <chr> <chr>
#> 1 1 male high school
#> 2 2 male high school
#> 3 3 male high school
#> 4 4 male high school
#> 5 5 male high school
#> # ℹ 995 more rows
#>
#> cues
#> # A tibble: 804 × 1
#> cue
#> <chr>
#> 1 intelligence
#> 2 Einstein
#> 3 books
#> 4 IQ tests
#> 5 college
#> # ℹ 799 more rows
#>
#> responses
#> # A tibble: 29,882 × 5
#> id cue response response_position response_level
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 intelligence Einstein 1 1
#> 2 1 intelligence books 2 1
#> 3 1 intelligence IQ tests 3 1
#> 4 1 intelligence college 4 1
#> 5 1 intelligence smart people 5 1
#> # ℹ 29,877 more rows
#>
#> targets
#> # A tibble: 804 × 2
#> target frequency
#> <chr> <dbl>
#> 1 intelligence 14
#> 2 Einstein 68
#> 3 books 48
#> 4 IQ tests 25
#> 5 college 8
#> # ℹ 799 more rows
#>