Correlate targets responses with participant variables
Source:R/correlate.R
ar_correlate_targets.Rd
ar_correlate_targets
calculates the correlations between the response occurrence of targets
and participant variables, such as gender or age.
Arguments
- associations
an
associatoR
object containing association data as generated by ar_import.- participant_vars
a
character
vector specifying the participant variables to assess. The variables must exist inassociations$participants
.- metric
a
character
scalar ofc("auto", "point-biserial", "phi", "cramer")
specifying the metric to calculate for the correlation ofparticipant_vars
and targets. Defaults to"auto"
.
Value
Returns an associatoR
object containing a list of tibbles, with targets
gaining correlation column(s):
- participants
A tibble of participants including a participant
id
and potential participant attributes.- cues
A tibble of cues including a
cue
variable and potential cue attributes.- responses
A tibble of responses including a participant id, the cues, the responses, the response level, and additional response attributes.
- targets
A tibble of targets including the specified analysis target, and correlation column(s).
Details
Function calculates the point-biserial correlation for numeric and Cramer's V for categorical participant_vars
.
Examples
ar_import(intelligence,
participant = participant_id,
cue = cue,
response = response,
participant_vars = c(gender, education),
response_vars = c(response_position, response_level)) %>%
ar_set_targets(targets = "cues") %>%
ar_correlate_targets(participant_vars = c(education, gender))
#> Joining with `by = join_by(target)`
#>
#> ── An associatoR object ────────────────────────────────────────────────────────
#>
#> participants
#> # A tibble: 1,000 × 3
#> id gender education
#> <dbl> <chr> <chr>
#> 1 1 male high school
#> 2 2 male high school
#> 3 3 male high school
#> 4 4 male high school
#> 5 5 male high school
#> # ℹ 995 more rows
#>
#> cues
#> # A tibble: 804 × 1
#> cue
#> <chr>
#> 1 intelligence
#> 2 Einstein
#> 3 books
#> 4 IQ tests
#> 5 college
#> # ℹ 799 more rows
#>
#> responses
#> # A tibble: 29,882 × 5
#> id cue response response_position response_level
#> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 intelligence Einstein 1 1
#> 2 1 intelligence books 2 1
#> 3 1 intelligence IQ tests 3 1
#> 4 1 intelligence college 4 1
#> 5 1 intelligence smart people 5 1
#> # ℹ 29,877 more rows
#>
#> targets
#> # A tibble: 804 × 3
#> target education_corr gender_corr
#> <chr> <dbl> <dbl>
#> 1 intelligence -0.0417 -0.0139
#> 2 Einstein -0.0950 0.102
#> 3 books -0.0959 0.0511
#> 4 IQ tests 0.0446 0.0446
#> 5 college -0.206 0.00936
#> # ℹ 799 more rows
#>